Quantao Yang

I'm a postdoc researcher at KTH Royal Institute of Technology, working with Prof. Olov Andersson. I'm passionate about developing intelligent robotic agents capable of executing tasks across various real-world environments.

I did my PhD in Computer Science at Örebro University, where I was advised by Prof. Todor Stoyanov and Prof. Johannes Andreas Stork.

Email  /  Scholar  /  Twitter  /  Github

profile photo

Research

I'm interested in robotics, reinforcement learning, imitation learning and generative AI.

One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
Finn Busch, Timon Homberger, Jesús Ortega-Peimbert, Quantao Yang, Olov Andersson
IEEE International Conference on Robotics and Automation (ICRA), 2025
Project    Paper    Code

Diffusion Trajectory-guided Policy for Long-horizon Robot Manipulation
Shichao Fan, Quantao Yang, Yajie Liu, Kun Wu, Zhengping Che, Qingjie Liu, Min Wan
Preprint, 2025
Paper   

PRIME: Scaffolding Manipulation Tasks with Behavior Primitives for Data-efficient Imitation Learning
Tian Gao, Soroush Nasiriany, Huihan Liu, Quantao Yang, Yuke Zhu
IEEE Robotics and Automation Letters (RA-L), 2024
Project    Paper    Code

Learn from Robot: Transferring Skills for Diverse Manipulation via Cycle Generative Networks
Quantao Yang, Johannes Andreas Stork, Todor Stoyanov
IEEE International Conference on Automation Science and Engineering (CASE), 2023
Paper   

Variable Impedance Skill Learning for Contact-rich Manipulation
Quantao Yang, Alexander Dürr, Elin Anna Topp, Johannes Andreas Stork, Todor Stoyanov
IEEE Robotics and Automation Letters (RA-L), 2022
Paper   

MPR-RL: Multi-Prior Regularized Reinforcement Learning for Knowledge Transfer
Quantao Yang, Johannes Andreas Stork, Todor Stoyanov
IEEE Robotics and Automation Letters (RA-L), 2022
Paper   

Null Space Based Efficient Reinforcement Learning with Hierarchical Safety Constraints
Quantao Yang, Johannes Andreas Stork, Todor Stoyanov
IEEE European Conference on Mobile Robots (ECMR), 2021
Paper   

Service

Reviewer for RAL, ICRA, IROS, CoRL


Design and source code from Jon Barron's website.